978 - 0 - 521 - 19676 - 5 - Bayesian Time Series Models
نویسندگان
چکیده
Abelian group, 278 acceptance probability, 24, 37, 246 adaptive Metropolis algorithm, 33 Akaike’s information criterion, 209, 320 alpha-beta recursion, 11, 390 annealed importance sampling, 321 aperiodic chain, 23 APF, see auxiliary particle filter AR model, see autoregressive model assumed density filtering, 17, 143, 388 autoregressive hidden Markov model, 185 autoregressive model, 4, 9, 111 auxiliary particle filter, 52, 86, 249, 255 auxiliary variable, 330
منابع مشابه
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملBayesian Methods in Non-linear Time Series
This paper reviews the analysis of the threshold autoregressive, smooth threshold autoregressive, and Markov switching autoregressive models from the Bayesian perspective. For each model we start by describing a baseline model and discussing possible extensions and applications. Then we review the choice of prior, inference, tests against the linear hypothesis, and conclude with models selectio...
متن کاملاستفاده از آنتروپی شانون در پیشپردازش ورودی شبکه بیزین جهت مدلسازی سریهای زمانی
Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...
متن کاملEvaluation of Time Series Patterns for Wind Speed Volatilities in Anzali Meteorological Station
Abstract. One of the major problems in using wind energy is that wind-generated electricity is more unstable than electricity generated by other sources, and therefore integrating wind energy use with traditional power generation systems can be a challenge. This problem can be effectively reduced by having accurate information about the mean and wind speed volatilities. Therefore, in this paper...
متن کامل